Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle.
نویسندگان
چکیده
BACKGROUND Early afterdepolarizations (EADs) are triggers of cardiac arrhythmia driven by L-type Ca(2+) current (ICaL) reactivation or sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange. In large mammals the positive action potential plateau promotes ICaL reactivation, and the current paradigm holds that cardiac EAD dynamics are dominated by interaction between ICaL and the repolarizing K(+) currents. However, EADs are also frequent in the rapidly repolarizing mouse action potential, which should not readily permit ICaL reactivation. This suggests that murine EADs exhibit unique dynamics, which are key for interpreting arrhythmia mechanisms in this ubiquitous model organism. We investigated these dynamics in myocytes from arrhythmia-susceptible calcium calmodulin-dependent protein kinase II delta C (CaMKIIδC)-overexpressing mice (Tg), and via computational simulations. METHODS AND RESULTS In Tg myocytes, β-adrenergic challenge slowed late repolarization, potentiated sarcoplasmic reticulum Ca(2+) release, and initiated EADs below the ICaL activation range (-47 ± 0.7 mV). These EADs were abolished by caffeine and tetrodotoxin (but not ranolazine), suggesting that sarcoplasmic reticulum Ca(2+) release and Na(+) current (INa), but not late INa, are required for EAD initiation. Simulations suggest that potentiated sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange shape late action potential repolarization to favor nonequilibrium reactivation of INa and thereby drive the EAD upstroke. Action potential clamp experiments suggest that lidocaine eliminates virtually all inward current elicited by EADs, and that this effect occurs at concentrations (40-60 μmol/L) for which lidocaine remains specific for inactivated Na(+) channels. This strongly suggests that previously inactive channels are recruited during the EAD upstroke, and that nonequilibrium INa dynamics underlie murine EADs. CONCLUSIONS Nonequilibrium reactivation of INa drives murine EADs.
منابع مشابه
Dynamics of sodium current mediated early afterdepolarizations
Early afterdepolarizations (EADs) have been attributed to two primary mechanisms: 1) recovery from inactivation of the L-type calcium (Ca) channel and/or 2) spontaneous Ca release, which depolarizes the membrane potential through the electrogenic sodium-calcium exchanger (NCX). The sodium (Na) current (INa), especially the late component of the Na current, has been recognized as an important pl...
متن کاملEarly afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve
AIMS Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolar...
متن کاملWhen Does Spontaneous Sarcoplasmic Reticulum Ca Release Cause a Triggered Arrhythmia? Cellular Versus Tissue Requirements
Ventricular arrhythmias are a major cause of sudden premature death in patients with ischemic heart disease, hypertrophy, and congestive heart failure. The processes that initiate these arrhythmias include reentry, abnormal automaticity, and triggered activity.1,2 In the past three decades, there has been substantial investigation into each of these processes.3,4 This discussion will focus on t...
متن کاملWhen does spontaneous sarcoplasmic reticulum CA(2+) release cause a triggered arrythmia? Cellular versus tissue requirements.
Ventricular arrhythmias are a major cause of sudden premature death in patients with ischemic heart disease, hypertrophy, and congestive heart failure. The processes that initiate these arrhythmias include reentry, abnormal automaticity, and triggered activity.1,2 In the past three decades, there has been substantial investigation into each of these processes.3,4 This discussion will focus on t...
متن کاملRevisiting the ionic mechanisms of early afterdepolarizations in cardiomyocytes: predominant by Ca waves or Ca currents?
Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2014